
Parsing	V
Taylor	Berg-Kirkpatrick	– CMU

Slides:	Dan	Klein	– UC	Berkeley

Algorithms	for	NLP

Agenda-Based	Parsing

Agenda-Based	Parsing
§ Agenda-based	parsing	is	like	graph	search	(but	over	a	

hypergraph)
§ Concepts:

§ Numbering:	we	number	fenceposts	between	words
§ “Edges”	or	items:	spans	with	labels,	e.g.	PP[3,5],	represent	the	sets	of	

trees	over	those	words	rooted	at	that	label	(cf.	search	states)
§ A	chart:	records	edges	we’ve	expanded	(cf.	closed	set)
§ An	agenda:	a	queue	which	holds	edges	(cf.	a	fringe	or	open	set)

0 1 2 3 4 5
critics write reviews with computers

PP

Word	Items
§ Building	an	item	for	the	first	time	is	called	discovery.		Items	go	

into	the	agenda	on	discovery.
§ To	initialize,	we	discover	all	word	items	(with	score	1.0).

critics write reviews with computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

Unary	Projection
§ When	we	pop	a	word	item,	the	lexicon	tells	us	the	tag	item	

successors	(and	scores)	which	go	on	the	agenda

critics write reviews with computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]

Item	Successors
§ When	we	pop	items	off	of	the	agenda:

§ Graph	successors:	unary	projections	(NNS	® critics,	NP	® NNS)

§ Hypergraph successors:	combine	with	items	already	in	our	chart

§ Enqueue /	promote	resulting	items	(if	not	in	chart	already)
§ Record	backtraces as	appropriate
§ Stick	the	popped	edge	in	the	chart	(closed	set)

§ Queries	a	chart	must	support:
§ Is	edge	X[i,j]	in	the	chart?		(What	score?)
§ What	edges	with	label	Y	end	at	position	j?
§ What	edges	with	label	Z	start	at	position	i?	

Y[i,j] with X ® Y forms X[i,j]

Y[i,j] and Z[j,k] with X ® Y Z form X[i,k]

Y Z

X

An	Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Empty	Elements
§ Sometimes	we	want	to	posit	nodes	in	a	parse	tree	that	don’t	

contain	any	pronounced	words:

§ These	are	easy	to	add	to	a	agenda-based	parser!
§ For	each	position	i,	add	the	“word”	edge	e[i,i]
§ Add	rules	like	NP	® e to	the	grammar
§ That’s	it!

0 1 2 3 4 5
I like to parse empties

e e e e e e

NP VP

I want you to parse this sentence

I want [] to parse this sentence

UCS	/	A*

§ With	weighted	edges,	order	matters
§ Must	expand	optimal	parse	from	

bottom	up	(subparses	first)
§ CKY	does	this	by	processing	smaller	

spans	before	larger	ones
§ UCS	pops	items	off	the	agenda	in	

order	of	decreasing	Viterbi	score
§ A*	search	also	well	defined

§ You	can	also	speed	up	the	search	
without	sacrificing	optimality
§ Can	select	which	items	to	process	first
§ Can	do	with	any	“figure	of	merit”	

[Charniak	98]
§ If	your	figure-of-merit	is	a	valid	A*	

heuristic,	no	loss	of	optimiality	[Klein	
and	Manning	03]

X

n0 i j

(Speech)	Lattices
§ There	was	nothing	magical	about	words	spanning	exactly	

one	position.
§ When	working	with	speech,	we	generally	don’t	know	

how	many	words	there	are,	or	where	they	break.
§ We	can	represent	the	possibilities	as	a	lattice	and	parse	

these	just	as	easily.

I
awe

of

van

eyes

saw
a

‘ve

an

Ivan

Learning	PCFGs

Treebank	PCFGs
§ Use	PCFGs	for	broad	coverage	parsing
§ Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]

Conditional	Independence?

§ Not	every	NP	expansion	can	fill	every	NP	slot
§ A	grammar	with	symbols	like	“NP”	won’t	be	context-free
§ Statistically,	conditional	independence	too	strong

Non-Independence
§ Independence	assumptions	are	often	too	strong.

§ Example:	the	expansion	of	an	NP	is	highly	dependent	on	the	
parent	of	the	NP	(i.e.,	subjects	vs.	objects).

§ Also:	the	subject	and	object	expansions	are	correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar	Refinement

§ Example:	PP	attachment

Grammar	Refinement

§ Structure	Annotation	[Johnson	’98,	Klein&Manning ’03]
§ Lexicalization	[Collins	’99,	Charniak ’00]
§ Latent	Variables	[Matsuzaki et	al.	05,	Petrov et	al.	’06]

Structural	Annotation

The	Game	of	Designing	a	Grammar

§ Annotation refines base treebank symbols to
improve statistical fit of the grammar
§ Structural annotation

Typical	Experimental	Setup

§ Corpus:	Penn	Treebank,	WSJ

§ Accuracy	– F1:	harmonic	mean	of	per-node	labeled	
precision	and	recall.

§ Here:	also	size	– number	of	symbols	in	grammar.

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23

Vertical	Markovization

§ Vertical	Markov	
order:	rewrites	
depend	on	past	k
ancestor	nodes.
(cf.	parent	
annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000
15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

Horizontal	Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

Order 1 Order ¥

Unary	Splits

§ Problem:	unary	
rewrites	used	to	
transmute	
categories	so	a	
high-probability	
rule	can	be	used.

Annotation F1 Size
Base 77.8 7.5K
UNARY 78.3 8.0K

n Solution: Mark
unary rewrite
sites with -U

Tag	Splits

§ Problem:	Treebank	tags	
are	too	coarse.

§ Example:	Sentential,	PP,	
and	other	prepositions	
are	all	marked	IN.

§ Partial	Solution:
§ Subdivide	the	IN	tag. Annotation F1 Size

Previous 78.3 8.0K
SPLIT-IN 80.3 8.1K

A	Fully	Annotated	(Unlex)	Tree

Some	Test	Set	Results

§ Beats	“first	generation”	lexicalized	parsers.
§ Lots	of	room	to	improve	– more	complex	models	next.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Unlexicalized 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1

Binarization /	Markovization
NP

DT JJ NN NN

v=1,h=∞

DT

NP

@NP[DT]	

@NP[DT,JJ,NN]	NN

JJ @NP[DT,JJ]	

NN

v=1,h=0

DT

NP

JJ

@NP	

@NPNN

@NP

NN

v=1,h=1

DT

NP

JJ

@NP[DT]	

@NP[…,NN]	NN

@NP[…,JJ]	

NN

Binarization /	Markovization
NP

DT JJ NN NN

v=2,h=∞

DT^NP

NP^VP	

JJ^NP

@NP^VP[DT]	

@NP^VP[DT,JJ,NN]	NN^NP

@NP^VP[DT,JJ]	

NN^NP

v=2,h=0

DT^NP

NP^VP	

JJ^NP

@NP	

@NPNN^NP

@NP

NN^NP

v=2,h=1

DT^NP

NP^VP	

JJ^NP

@NP^VP[DT]	

@NP^VP[…,NN]	NN^NP

@NP^VP[…,JJ]	

NN^NP

Grammar	Projections

NP	→	DT	@NP

Coarse Grammar Fine Grammar

DT

NP

JJ

@NP	

@NPNN

@NP

NN

DT^NP

NP^VP	

JJ^NP

@NP^VP[DT]	

@NP^VP[…,NN]	NN^NP

@NP^VP[…,JJ]	

NN^NP

NP^VP	→	DT^NP	@NP^VP[DT]

Note:	X-Bar	Grammars	are	projections	with	rules	like	XP	→	Y	@X	or	XP	→	@X	Y	or	@X	→	X

Grammar	Projections

NP
Coarse Symbols Fine Symbols

DT

@NP

NP^VP
NP^S
@NP^VP[DT]
@NP^S[DT]
@NP^VP[…,JJ]
@NP^S[…,JJ]
DT^NP

Efficient	Parsing	for
Structural	Annotation

Coarse-to-Fine	Pruning

For	each	coarse	chart	item	X[i,j],	compute	posterior	probability:

… QP NP VP …coarse:

fine:

E.g.	consider	the	span	5	to	12:

< thresholdP (X|i, j, S)

Coarse-to-Fine	Pruning

For	each	coarse	chart	item	X[i,j],	compute	posterior	probability:

… QP NP VP …coarse:

fine:

E.g.	consider	the	span	5	to	12:

< threshold
↵(X, i, j) · �(X, i, j)

↵(root, 0, n)

Computing	Marginals
↵(X, i, j) =

X

X!Y Z

X

k2(i,j)

P (X ! Y Z)↵(Y, i, k)↵(Z, k, j)

Computing	Marginals
�(X, i, j) =

X

Y!ZX

X

k2[0,i)

P (Y ! ZX)�(Y, k, j)↵(B, k, i)

+
X

Y!XZ

X

k2(j,n]

P (Y ! XZ)�(Y, i, k)↵(Z, j, k)

Computing	(Max-)Marginals

Computing	(Max-)Marginals

Inside	and	Outside	Scores

Pruning	with	A*

§ You	can	also	speed	up	the	
search	without	sacrificing	
optimality

§ For	agenda-based	parsers:
§ Can	select	which	items	to	
process	first

§ Can	do	with	any	“figure	of	
merit”	[Charniak	98]

§ If	your	figure-of-merit	is	a	
valid	A*	heuristic,	no	loss	of	
optimiality	[Klein	and	
Manning	03]

X

n0 i j

Efficient	Parsing	for
Lexical	Grammars

Lexicalized	Trees

§ Add	“head	words”	to	
each	phrasal	node
§ Syntactic	vs.	semantic	

heads
§ Headship	not	in	(most)	

treebanks
§ Usually	use	head	rules,	

e.g.:
§ NP:

§ Take	leftmost	NP
§ Take	rightmost	N*
§ Take	rightmost	JJ
§ Take	right	child

§ VP:
§ Take	leftmost	VB*
§ Take	leftmost	VP
§ Take	left	child

Lexicalized	PCFGs?
§ Problem:	we	now	have	to	estimate	probabilities	like

§ Never	going	to	get	these	atomically	off	of	a	treebank

§ Solution:	break	up	derivation	into	smaller	steps

Lexical	Derivation	Steps
§ A	derivation	of	a	local	tree	[Collins	99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized	CKY

bestScore(X,i,j,h)
if (j = i+1)
return tagScore(X,s[i])

else
return
max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

k,h’,X->YZ

Quartic	Parsing
§ Turns	out,	you	can	do	(a	little)	better	[Eisner	99]

§ Gives	an	O(n4)	algorithm
§ Still	prohibitive	in	practice	if	not	pruned

Y[h] Z[h’]

X[h]

i h k h’ j

Y[h] Z

X[h]

i h k j

Pruning	with	Beams
§ The	Collins	parser	prunes	with	per-

cell	beams	[Collins	99]
§ Essentially,	run	the	O(n5) CKY
§ Remember	only	a	few	hypotheses	for	

each	span	<i,j>.
§ If	we	keep	K	hypotheses	at	each	span,	

then	we	do	at	most	O(nK2)	work	per	
span	(why?)

§ Keeps	things	more	or	less	cubic	(and	in	
practice	is	more	like	linear!)

§ Also:	certain	spans	are	forbidden	
entirely	on	the	basis	of	punctuation	
(crucial	for	speed)

Y[h] Z[h’]

X[h]

i h k h’ j

Pruning	with	a	PCFG

§ The	Charniak parser	prunes	using	a	two-pass,	coarse-
to-fine	approach	[Charniak 97+]
§ First,	parse	with	the	base	grammar
§ For	each	X:[i,j]	calculate	P(X|i,j,s)

§ This	isn’t	trivial,	and	there	are	clever	speed	ups
§ Second,	do	the	full	O(n5) CKY

§ Skip	any	X	:[i,j]	which	had	low	(say,	<	0.0001)	posterior
§ Avoids	almost	all	work	in	the	second	phase!

§ Charniak et	al	06:	can	use	more	passes
§ Petrov et	al	07:	can	use	many	more	passes

Results

§ Some	results
§ Collins	99	– 88.6	F1	(generative	lexical)
§ Charniak and	Johnson	05	– 89.7	/	91.3	F1	(generative	
lexical	/	reranked)

§ Petrov et	al	06	– 90.7	F1	(generative	unlexical)
§ McClosky et	al	06	– 92.1	F1	(gen	+	rerank +	self-train)

Latent	Variable	PCFGs

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]

The	Game	of	Designing	a	Grammar

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]
§ Head	lexicalization [Collins	’99,	Charniak ’00]

The	Game	of	Designing	a	Grammar

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]
§ Head	lexicalization [Collins	’99,	Charniak ’00]
§ Automatic	clustering?

The	Game	of	Designing	a	Grammar

Latent	Variable	Grammars

Parse Tree
Sentence Parameters

...

Derivations

Backward

Learning	Latent	Annotations

EM	algorithm:

X1

X2 X7X4

X5 X6X3

He was right

.

§ Brackets are known
§ Base categories are known
§ Only induce subcategories

Just	like	Forward-Backward	for	HMMs.
Forward

Refinement	of	the	DT	tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical	refinement

Hierarchical	Estimation	Results

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700
Total Number of grammar symbols

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

Model F1
Flat Training 87.3
Hierarchical Training 88.4

Refinement	of	the	,	tag
§ Splitting	all	categories	equally	is	wasteful:

Adaptive Splitting

§ Want to split complex categories more
§ Idea: split everything, roll back splits which

were least useful

Adaptive	Splitting	Results

Model F1
Previous 88.4
With 50% Merging 89.5

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP S

AD
JP

SB
AR Q

P

W
H

N
P

PR
N

N
X

SI
N

V

PR
T

W
H

PP SQ

C
O

N
JP

FR
AG

N
AC U
C

P

W
H

AD
VP IN
TJ

SB
AR

Q

R
R

C

W
H

AD
JP X

R
O

O
T

LS
T

Number	of	Phrasal	Subcategories

Number	of	Lexical	Subcategories

0

10

20

30

40

50

60

70

NN
P JJ

NN
S NN VB
N RB

VB
G VB VB
D CD IN

VB
Z

VB
P DT

NN
PS CC JJ

R
JJ

S :
PR

P
PR

P$ M
D

RB
R

W
P

PO
S

PD
T

W
RB

-L
RB

- .
EX

W
P$

W
DT

-R
RB

- ''
FW RB

S TO
$

UH
, ``

SY
M RP LS #

Learned	Splits

§ Proper Nouns (NNP):

§ Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

§ Relative	adverbs	(RBR):

§ Cardinal	Numbers	(CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned	Splits

Final	Results	(Accuracy)

≤ 40 words
F1

all
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Efficient	Parsing	for
Hierarchical	Grammars

Coarse-to-Fine	Inference
§ Example:	PP	attachment

?????????

Hierarchical	Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Bracket	Posteriors

1621	min
111	min
35	min

15	min
(no	search	error)

Other	Syntactic	Models

Dependency	Parsing

§ Lexicalized	parsers	can	be	seen	as	producing	dependency	trees

§ Each	local	binary	tree	corresponds	to	an	attachment	in	the	dependency	
graph

questioned

lawyer witness

the the

Dependency	Parsing

§ Pure	dependency	parsing	is	only	cubic	[Eisner	99]

§ Some	work	on	non-projective dependencies
§ Common	in,	e.g.	Czech	parsing
§ Can	do	with	MST	algorithms	[McDonald	and	Pereira	05]

Y[h] Z[h’]

X[h]

i h k h’ j

h h’

h

h k h’

Shift-Reduce	Parsers

§ Another	way	to	derive	a	tree:

§ Parsing
§ No	useful	dynamic	programming	search
§ Can	still	use	beam	search	[Ratnaparkhi	97]

Tree	Insertion	Grammars

§ Rewrite	large	(possibly	lexicalized)	subtrees in	a	single	step

§ Formally,	a	tree-insertion	grammar
§ Derivational	ambiguity	whether	subtrees were	generated	atomically	

or	compositionally
§ Most	probable	parse	is	NP-complete

TIG:	Insertion

Tree-adjoining	grammars

§ Start	with	local	trees
§ Can	insert	structure	

with	adjunction	
operators

§ Mildly	context-
sensitive

§ Models	long-distance	
dependencies	
naturally

§ …	as	well	as	other	
weird	stuff	that	CFGs	
don’t	capture	well	
(e.g.	cross-serial	
dependencies)

TAG:	Long	Distance

CCG	Parsing

§ Combinatory	
Categorial	Grammar
§ Fully	(mono-)	

lexicalized	grammar
§ Categories	encode	

argument	sequences
§ Very	closely	related	

to	the	lambda	
calculus	(more	later)

§ Can	have	spurious	
ambiguities	(why?)

Empty	Elements

Empty	Elements

Empty	Elements
§ In	the	PTB,	three	kinds	of	empty	elements:

§ Null	items	(usually	complementizers)
§ Dislocation	(WH-traces,	topicalization,	relative	clause	and	
heavy	NP	extraposition)

§ Control	(raising,	passives,	control,	shared	argumentation)

§ Need	to	reconstruct	these	(and	resolve	any	
indexation)

Example:	English

Example:	German

Types	of	Empties

A	Pattern-Matching	Approach
§ [Johnson	02]

Pattern-Matching	Details
§ Something	like	transformation-based	learning
§ Extract	patterns

§ Details:	transitive	verb	marking,	auxiliaries
§ Details:	legal	subtrees

§ Rank	patterns
§ Pruning	ranking:	by	correct	/	match	rate
§ Application	priority:	by	depth

§ Pre-order	traversal
§ Greedy	match

Top	Patterns	Extracted

Results

Semantic	Roles

Semantic	Role	Labeling	(SRL)

§ Characterize	clauses	as	relations with	roles:

§ Says	more	than	which	NP	is	the	subject	(but	not	much	more):
§ Relations	like	subject are	syntactic,	relations	like	agent or	message are	

semantic
§ Typical	pipeline:

§ Parse,	then	label	roles
§ Almost	all	errors	locked	in	by	parser
§ Really,	SRL	is	quite	a	lot	easier	than	parsing

SRL	Example

PropBank	/	FrameNet

§ FrameNet:	roles	shared	between	verbs
§ PropBank:	each	verb	has	its	own	roles
§ PropBank more	used,	because	it’s	layered	over	the	treebank (and	so	has	

greater	coverage,	plus	parses)
§ Note:	some	linguistic	theories	postulate	fewer	roles	than	FrameNet (e.g.	

5-20	total:	agent,	patient,	instrument,	etc.)

PropBank	Example

PropBank	Example

PropBank	Example

Shared	Arguments

Path	Features

Results

§ Features:
§ Path	from	target	to	filler
§ Filler’s	syntactic	type,	headword,	case
§ Target’s	identity
§ Sentence	voice,	etc.
§ Lots	of	other	second-order	features

§ Gold	vs	parsed	source	trees

§ SRL	is	fairly	easy	on	gold	trees

§ Harder	on	automatic	parses

Parse	Reranking

§ Assume	the	number	of	parses	is	very	small
§ We	can	represent	each	parse	T	as	a	feature	vector	j(T)

§ Typically,	all	local	rules	are	features
§ Also	non-local	features,	like	how	right-branching	the	overall	tree	is
§ [Charniak and	Johnson	05]	gives	a	rich	set	of	features

K-Best	Parsing [Huang and Chiang 05,
Pauls, Klein, Quirk 10]

