Algorithms for NLP

Parsing V

Taylor Berg-Kirkpatrick - CMU
Slides: Dan Klein - UC Berkeley

Agenda-Based Parsing

Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
- Numbering: we number fenceposts between words
- "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
- A chart: records edges we've expanded (cf. closed set)
- An agenda: a queue which holds edges (cf. a fringe or open set)

Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

AGENDA

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

critics
write reviews
with

Unary Projection

- When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda

critics $[0,1]$	write[1,2]	reviews[2,3]	with[3,4]	computers[4,5]
NNS[0,1]	VBP[1,2]	NNS[2,3]	IN[3,4]	NNS[4,5]

critics
write
reviews
with

Item Successors

- When we pop items off of the agenda:
- Graph successors: unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

$Y[i, j]$ with $X \rightarrow Y$ forms $X[i, j]$

- Hypergraph successors: combine with items already in our chart

$Y[i, j]$ and $Z[j, k]$ with $X \rightarrow Y Z$ form $X[i, k]$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
- Is edge $X[i, j]$ in the chart? (What score?)
- What edges with label Y end at position j ?
- What edges with label Z start at position i?

E
 An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5] ROOT

Empty Elements

- Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want you to parse this sentence
I want [] to parse this sentence

- These are easy to add to a agenda-based parser!
- For each position i , add the "word" edge $\varepsilon[i, i]$
- Add rules like NP $\rightarrow \varepsilon$ to the grammar
- That's it!

UCS / A*

- With weighted edges, order matters
- Must expand optimal parse from bottom up (subparses first)
- CKY does this by processing smaller spans before larger ones
- UCS pops items off the agenda in order of decreasing Viterbi score
- A* search also well defined
- You can also speed up the search without sacrificing optimality

- Can select which items to process first
- Can do with any "figure of merit" [Charniak 98]
- If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

Learning PCFGs

Treebank PCFGs

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

$\mathrm{ROOT} \rightarrow \mathrm{S}$	1
$\mathrm{~S} \rightarrow \mathrm{NP}$ VP.	1
$\mathrm{NP} \rightarrow \mathrm{PRP}$	1
$\mathrm{VP} \rightarrow \mathrm{VBD}$ ADJP	1

Model	F1
Baseline	72.0

Conditional Independence?

- Not every NP expansion can fill every NP slot
- A grammar with symbols like "NP" won’t be context-free
- Statistically, conditional independence too strong

Non-Independence

- Independence assumptions are often too strong.

NPs under S

NP PP DT NN PRP

NPs under VP

NP PP DT NN PRP

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

- Example: PP attachment

raised

$$
a \quad \text { point of order }
$$

Grammar Refinement

- Structure Annotation [Johnson '98, Klein\&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation

Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

- Accuracy - F1: harmonic mean of per-node labeled precision and recall.
- Here: also size - number of symbols in grammar.

Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)

Order 1

Order 2

Horizontal Markovization

Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.
- Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5 K
UNARY	78.3	8.0 K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
- Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0 K
SPLIT-IN	80.3	8.1 K

. A Fully Annotated (Unlex) Tree

ROOT

This

Some Test Set Results

Parser	LP	LR	F1	CB	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	$\mathbf{8 8 . 6}$	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve - more complex models next.

E Binarization / Markovization

$v=1, h=\infty$

$\mathrm{v}=1, \mathrm{~h}=1$

$\mathrm{v}=1, \mathrm{~h}=0$

E Binarization / Markovization

$\mathrm{V}=2, \mathrm{~h}=\infty$

$\mathrm{v}=2, \mathrm{~h}=1$

NN^NP
$v=2, h=0$
DT^NP @NP

NN^NP

Grammar Projections

Coarse Grammar

$N P \rightarrow$ DT @NP

Fine Grammar

NP^VP \rightarrow DT^NP @NP^VP[DT]

Note: X-Bar Grammars are projections with rules like $X P \rightarrow Y$ @X or $X P \rightarrow$ @X Y or @ $\rightarrow X$

Grammar Projections

Coarse Symbols
NP
@NP
DT

Fine Symbols
NP^VP
NP^S
@NP^VP[DT]
@NP^S[DT]
@NP^VP[..., JJ]
@ $N P \wedge S[. . ., J]$
DT^NP

Efficient Parsing for Structural Annotation

Coarse-to-Fine Pruning

For each coarse chart item $X[i, j]$, compute posterior probability:

$$
P(X \mid i, j, S)<\text { threshold }
$$

E.g. consider the span 5 to 12 :

Coarse-to-Fine Pruning

For each coarse chart item $X[i, j]$, compute posterior probability:

$$
\frac{\alpha(X, i, j) \cdot \beta(X, i, j)}{\alpha(\operatorname{root}, 0, n)}<\text { threshold }
$$

E.g. consider the span 5 to 12 :

Computing Marginals

$$
\alpha(X, i, j)=\sum_{X \rightarrow Y Z} \sum_{k \in(i, j)} P(X \rightarrow Y Z) \alpha(Y, i, k) \alpha(Z, k, j)
$$

Computing Marginals

$$
\begin{aligned}
\beta(X, i, j)= & \sum_{Y \rightarrow Z X} \sum_{k \in[0, i)} P(Y \rightarrow Z X) \beta(Y, k, j) \alpha(B, k, i) \\
& +\sum_{Y \rightarrow X Z} \sum_{k \in(j, n]} P(Y \rightarrow X Z) \beta(Y, i, k) \alpha(Z, j, k)
\end{aligned}
$$

Computing (Max-)Marginals

Computing (Max-)Marginals

W Inside and Outside Scores

Pruning with A*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
- Can select which items to process first
- Can do with any "figure of merit" [Charniak 98]

- If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]

Efficient Parsing for Lexical Grammars

Lexicalized Trees

- Add "head words" to each phrasal node
- Syntactic vs. semantic heads
- Headship not in (most) treebanks
- Usually use head rules, e.g.:
- NP:
- Take leftmost NP
- Take rightmost N*
- Take rightmost JJ
- Take right child
- VP:
- Take leftmost VB*
- Take leftmost VP
- Take left child

Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

```
VP(saw) -> VBD(saw) NP-C(her) NP(today)
```

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

- A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

bestScore (X,i,j,h)

```
if (j = i+1)
    return tagScore(X,s[i])
```

else
return
$\max _{k, h^{\prime}, X->Y Z} \max _{\text {I }} \operatorname{score}\left(X[h]->Y[h] Z\left[h^{\prime}\right]\right)$ *
bestScore (Y,i,k,h) *
bestScore (Z,k,j, h')
$\max _{k, h^{\prime}, x->Y Z} \operatorname{score}\left(X[h]->Y\left[h^{\prime}\right] \quad Z[h]\right)$ *
bestScore(Y,i,k,h') *
bestScore (Z,k,j,h)

Quartic Parsing

- Turns out, you can do (a little) better [Eisner 99]

- Gives an O(n^{4}) algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with percell beams [Collins 99]
- Essentially, run the $O\left(n^{5}\right) C K Y$
- Remember only a few hypotheses for each span <i,j>.
- If we keep K hypotheses at each span, then we do at most $O\left(n K^{2}\right)$ work per span (why?)
- Keeps things more or less cubic (and in practice is more like linear!)

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarse-to-fine approach [Charniak 97+]
- First, parse with the base grammar
- For each X:[i,j] calculate P(X|i,j,s)
- This isn't trivial, and there are clever speed ups
- Second, do the full O(n^{5}) CKY
- Skip any X : [i,j] which had low (say, < 0.0001) posterior
- Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Results

- Some results
- Collins 99-88.6 F1 (generative lexical)
- Charniak and Johnson 05-89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06-90.7 F1 (generative unlexical)
- McClosky et al 06-92.1 F1 (gen + rerank + self-train)

Latent Variable PCFGs

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson '98]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson '98]
- Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson '98]
- Head lexicalization [Collins '99, Charniak '00]
- Automatic clustering?

Latent Variable Grammars

Parse Tree T
Sentence w

c	
Grammar G	
$\mathrm{S}_{0} \rightarrow \mathrm{NP}_{0} \mathrm{VP}_{0}$	$?$
$\mathrm{~S}_{0} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{0}$	$?$
$\mathrm{~S}_{0} \rightarrow \mathrm{NP}_{0} \mathrm{VP}_{1}$	$?$
$\mathrm{~S}_{0} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{1}$	$?$
$\mathrm{~S}_{1} \rightarrow \mathrm{NP}_{0} \mathrm{VP}_{0}$	$?$
\ldots	
$\mathrm{~S}_{1} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{1}$	$?$
\ldots	
$\mathrm{NP}_{0} \rightarrow \mathrm{PRP}_{0}$	$?$
$\mathrm{NP}_{0} \rightarrow \mathrm{PRP}_{1}$	$?$
\ldots	
Lexicon	
$\mathrm{PRP}_{0} \rightarrow$ She	$?$
$\mathrm{PRP}_{1} \rightarrow$ She	$?$
\ldots	
$\mathrm{VBD}_{0} \rightarrow$ was	$?$
$\mathrm{VBD}_{1} \rightarrow$ was	$?$
$\mathrm{VBD}_{2} \rightarrow$ was	$?$

Parameters θ

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.

Forward

Refinement of the DT tag

DT

Hierarchical refinement

. Hierarchical Estimation Results

Refinement of the , tag

- Splitting all categories equally is wasteful:

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Adaptive Splitting Results

Number of Phrasal Subcategories

Number of Lexical Subcategories

Learned Splits

- Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

- Personal pronouns (PRP):

PRP-0	It	He	l
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

- Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

- Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Final Results (Accuracy)

		≤ 40 words F1	$\begin{aligned} & \hline \text { all } \\ & \text { F1 } \end{aligned}$
$\underset{\Omega}{\mathrm{Z}}$	Charniak\&Johnson '05 (generative)	90.1	89.6
	Split / Merge	90.6	90.1
$\begin{aligned} & \text { Q } \\ & \text { 妿 } \end{aligned}$	Dubey '05	76.3	-
	Split / Merge	80.8	80.1
$\frac{?}{\frac{1}{2}}$	Chiang et al. '02	80.0	76.6
	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

Efficient Parsing for Hierarchical Grammars

Coarse-to-Fine Inference

- Example: PP attachment

Hierarchical Pruning

split in eight:

Bracket Posteriors

1621 min 111 min

35 min
15 min
(no search error)

Other Syntactic Models

Dependency Parsing

- Lexicalized parsers can be seen as producing dependency trees

- Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing

- Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
- Common in, e.g. Czech parsing
- Can do with MST algorithms [McDonald and Pereira 05]

Shift-Reduce Parsers

- Another way to derive a tree:

- Parsing
- No useful dynamic programming search
- Can still use beam search [Ratnaparkhi 97]

Tree Insertion Grammars

- Rewrite large (possibly lexicalized) subtrees in a single step

- Formally, a tree-insertion grammar
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

TIG: Insertion

Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators

- Mildly contextsensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-serial dependencies)

TAG: Long Distance

CCG Parsing

- Combinatory

Categorial Grammar

- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus (more later)
- Can have spurious ambiguities (why?)

John \vdash NP

shares \vdash NP
buys $\vdash(\mathrm{S} \backslash \mathrm{NP}) / \mathrm{NP}$
sleeps $\vdash \mathrm{S} \backslash \mathrm{NP}$
well $\vdash(\mathrm{S} \backslash N \mathrm{P}) \backslash(\mathrm{S} \backslash N \mathrm{P})$

Empty Elements

Empty Elements

Empty Elements

- In the PTB, three kinds of empty elements:
- Null items (usually complementizers)
- Dislocation (WH-traces, topicalization, relative clause and heavy NP extraposition)
- Control (raising, passives, control, shared argumentation)
- Need to reconstruct these (and resolve any indexation)

Example: English

Example: German

Types of Empties

A Pattern-Matching Approach

- [Johnson 02]

1 NNP

Sam likes -NoNe-
T-1

-NONE-

* $\mathrm{T}^{\star}-1$

Pattern-Matching Details

- Something like transformation-based learning
- Extract patterns
- Details: transitive verb marking, auxiliaries
- Details: legal subtrees
- Rank patterns
- Pruning ranking: by correct / match rate
- Application priority: by depth
- Pre-order traversal
- Greedy match

Top Patterns Extracted

Count	Match	Pattern
5816	6223	(S (NP (-NONE- *)) VP)
5605	7895	(SBAR (-NONE- 0) S)
5312	5338	(SBAR WHNP-1 (S (NP (-NONE- *T*-1)) VP))
4434	5217	(NP QP (-NONE-*U*))
1682	1682	(NP \$ CD (-NONE- * ${ }^{*}$))
1327	1593	(VP VBN_t (NP (-NONE- *)) PP)
700	700	(ADJP QP (-NONE- * ${ }^{*}$))
662	1219	(SBAR (WHNP-1 (-NONE- 0)) (S (NP (-NONE-*T*-1)) VP))
618	635	(S S-1 , NP (VP VBD ($\operatorname{SBAR}(-\mathrm{NONE}-0)(\mathrm{S}(-\mathrm{NONE}-* \mathrm{~T} *-1))$) .)
499	512	(SINV ${ }^{\prime} \mathrm{S}-1,{ }^{\prime}$ ($\operatorname{VP} \operatorname{VBZ}$ (S (-NONE- * $\left.\mathrm{T}^{*}-1\right)$)) NP .)
361	369	(SINV ' ${ }^{\text {S-1 }}$, '' (VP VBD (S (-NONE- *T*-1))) NP .)
352	320	($S \operatorname{NP}-1$ (VP VBZ (S (NP (-NONE-*-1)) VP)))
346	273	(S NP-1 (VP AUX (VP VBN_t (NP (-NONE- *-1)) PP)))
322	467	(VP VBD_t (NP (-NONE- *)) PP)
269	275	

Results

Empty node		Section 23			Parser output		
POS	Label	P	R	f	P	R	f
(Overall)		0.93	0.83	0.88	0.85	0.74	0.79
NP	\star	0.95	0.87	0.91	0.86	0.79	0.82
NP	*T*	0.93	0.88	0.91	0.85	0.77	0.81
	0	0.94	0.99	0.96	0.86	0.89	0.88
	$\star U^{*}$	0.92	0.98	0.95	0.87	0.96	0.92
S	*T*	0.98	0.83	0.90	0.97	0.81	0.88
ADVP	*T*	0.91	0.52	0.66	0.84	0.42	0.56
SBAR		0.90	0.63	0.74	0.88	0.58	0.70
WHNP	0	0.75	0.79	0.77	0.48	0.46	0.47

Semantic Roles

Semantic Role Labeling (SRL)

- Characterize clauses as relations with roles:
[Judge She] blames [Evaluee the Government] [Reason for failing to do enough to help].

Holman would characterise this as blaming [Evaluee the poor] .
The letter quotes Black as saying that [Judge white and Navajo ranchers] misrepresent their livestock losses and blame [Reason everything] [Evaluee on coyotes] .

- Says more than which NP is the subject (but not much more):
- Relations like subject are syntactic, relations like agent or message are semantic
- Typical pipeline:
- Parse, then label roles
- Almost all errors locked in by parser
- Really, SRL is quite a lot easier than parsing

SRL Example

PropBank / FrameNet

- FrameNet: roles shared between verbs
- PropBank: each verb has its own roles
- PropBank more used, because it's layered over the treebank (and so has greater coverage, plus parses)
- Note: some linguistic theories postulate fewer roles than FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)

PropBank Example

fall. 01 sense: move downward
roles: Arg1: thing falling
Arg2: extent, distance fallen
Arg3: start point
Arg4: end point

Sales fell to $\$ 251.2$ million from $\$ 278.7$ million.
$\arg 1: \quad$ Sales
rel: fell
arg4: to $\$ 251.2$ million
arg3: from $\$ 278.7$ million

PropBank Example

rotate. 02 sense: shift from one thing to another
roles: $\operatorname{Arg} 0$: causer of shift
Arg1: thing being changed
Arg2: old thing
Arg3: new thing

Many of Wednesday's winners were losers yesterday as investors quickly took profits and rotated their buying to other issues, traders said.
(wsj_1723)
$\arg 0$: investors
rel: rotated
$\arg 1$: their buying
$\arg 3$: to other issues

PropBank Example

aim. 01 sense: intend, plan
roles: Arg0: aimer, planner
Arg1: plan, intent

The Central Council of Church Bell Ringers aims *trace* to improve relations with vicars. (wsj_0089)
$\arg 0$: The Central Council of Church Bell Ringers
rel: aims
arg1: *trace* to improve relations with vicars

$$
\begin{array}{ll}
\text { aim. } 02 & \text { sense: point (weapon) at } \\
\text { roles: } & \text { Arg0: aimer } \\
& \operatorname{Arg} 1: \text { weapon, etc. } \\
& \operatorname{Arg} 2: \text { target }
\end{array}
$$

Banks have been aiming packages at the elderly.
arg0: Banks
rel: aiming
arg1: packages
$\arg 2: \quad$ at the elderly

Shared Arguments

```
(NP-SBJ (JJ massive) (JJ internal) (NN debt) )
    (VP (VBZ has)
    (VP (VBN forced)
    (S
        (NP-SBJ-1 (DT the) (NN government) )
        (VP
            (VP (TO to)
            (VP (VB borrow)
                (ADVP-MNR (RB massively) )...
```


Path Features

Path	Description
VB $\uparrow \mathrm{VP} \downarrow \mathrm{PP}$	PP argument/adjunct
VB $\uparrow \mathrm{VP} \uparrow \mathrm{S} \downarrow \mathrm{NP}$	subject
VB $\uparrow \mathrm{VP} \downarrow \mathrm{NP}$	object
VB $\uparrow \mathrm{VP} \uparrow \mathrm{VP} \uparrow \mathrm{S} \downarrow \mathrm{NP}$	subject (embedded VP)
VB $\uparrow \mathrm{VP} \downarrow \mathrm{ADVP}$	adverbial adjunct
$\mathrm{NN} \uparrow \mathrm{NP} \uparrow \mathrm{NP} \downarrow \mathrm{PP}$	prepositional complement of noun

Results

- Features:
- Path from target to filler
- Filler's syntactic type, headword, case
- Target's identity
- Sentence voice, etc.
- Lots of other second-order features
- Gold vs parsed source trees
- SRL is fairly easy on gold trees
- Harder on automatic parses

CORE		ARGM	
F1	Acc.	F1	Acc.
92.2	80.7	89.9	71.8

CORE		ARGM	
F1	Acc.	F1	Acc.
84.1	66.5	81.4	55.6

Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as a feature vector $\varphi(T)$
- Typically, all local rules are features
- Also non-local features, like how right-branching the overall tree is
- [Charniak and Johnson 05] gives a rich set of features

K-Best Parsing

[Huang and Chiang 05, Pauls, Klein, Quirk 10]

$$
\gamma=\gamma_{\mathrm{O}}+r
$$

