Algorithms for NLP

Parsing V

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

Agenda-Based Parsing

W Agenda-Based Parsing

= Agenda-based parsing is like graph search (but over a
hypergraph)
= Concepts:

= Numbering: we number fenceposts between words

= “Edges” or items: spans with labels, e.g. PP[3,5], represent the sets of
trees over those words rooted at that label (cf. search states)

= A chart: records edges we’ve expanded (cf. closed set)
= An agenda: a queue which holds edges (cf. a fringe or open set)

PP

critics write reviews with computers
0 1 2 3 4)

p 3 Word Items

= Building an item for the first time is called discovery. Items go
into the agenda on discovery.

" Toinitialize, we discover all word items (with score 1.0).

AGENDA
critics[0,1], write[1,2], reviews][2,3], with[3,4], computers[4,5]

CHART [EMPTY]
o o o o o o
0 1 2 3 4 5

critics write reviews with computers

p 3 Unary Projection

= When we pop a word item, the lexicon tells us the tag item
successors (and scores) which go on the agenda

critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5]

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
® critics write ® reviews ® with ® computers ®
0 1 2 3)

critics write reviews with computers

p 3 ltem Successors

= When we pop items off of the agenda:
= Graph successors: unary projections (NNS — critics, NP — NNS)

Y[i,j] with X — Y forms X]i,]]

= Hypergraph successors: combine with items already in our chart
Y[i,j] and Z[j,k] with X — Y Z form X][i k]

= Enqueue / promote resulting items (if not in chart already)
= Record backtraces as appropriate X
= Stick the popped edge in the chart (closed set)

= Queries a chart must support: % 7

= |s edge X[i,j] in the chart? (What score?)
= What edges with label Y end at position j? /\/\

What edges with label Z start at position i?

p 3 An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2]
VP[1,3] PP[3,5] ROOTI[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]
ROOT

critics write reviews with computers
0 1 2 3 4)

}& Empty Elements

= Sometimes we want to posit nodes in a parse tree that don’t
contain any pronounced words:

| want you to parse this sentence
| want [] to parse this sentence
* These are easy to add to a agenda-based parser!
= For each position i, add the “word” edge ¢]i,]

= Add rules like NP — ¢ to the grammar
* That’s it!

NP VP

like to parse 4 empties

b3 UCS / A*

= With weighted edges, order matters

= Must expand optimal parse from
bottom up (subparses first)

= CKY does this by processing smaller
spans before larger ones

= UCS pops items off the agenda in
order of decreasing Viterbi score

= A* search also well defined

= You can also speed up the search
without sacrificing optimality
= (Can select which items to process first

= Can do with any “figure of merit”
[Charniak 98]

= |f your figure-of-merit is a valid A*
heuristic, no loss of optimiality [Klein
and Manning 03]

E& (Speech) Lattices

= There was nothing magical about words spanning exactly
one position.

= When working with speech, we generally don’t know
how many words there are, or where they break.

= We can represent the possibilities as a lattice and parse
these just as easily.

lvan

eyes

./\. awe
|

saw ‘ve van

Learning PCFGs

p 3 Treebank PCFGs

= Use PCFGs for broad coverage parsing

[Charniak 96]

= (Can take a grammar right off the trees (doesn’t work well):

ROOT
Sl) ROOT - S 1
e S—>NPVP.]
NP VP .
| N > NP — PRP 1
PRP VBD ADJP .
| | | VP — VBD ADJP 1
He was]]
|
right
Model F1

Baseline 72.0

}ﬁ Conditional Independence?

S
B
NP VP
| ——
PRP VBD NP
| I —

She heard DT NN

the noise

= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong

p 3 Non-Independence

" |[ndependence assumptions are often too strong.

All NPs NPs under S NPs under VP

21% 23%
o

11%
° 9%

.. 6%

NPPP DTNN PRP NPPP DTNN PRP NPPP DTNN PRP

4%

= Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!

E& Grammar Refinement

" Example: PP attachment

VP NP

TNl T T

They

raised

a point of order

Eﬁ Grammar Refinement

PRP VBD NP Abk%e
She heard DT NN
| |
the noise

= Structure Annotation [Johnson ’98, Klein&Manning '03]
= Lexicalization [Collins 99, Charniak "00]
= Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

}f@ The Game of Designing a Grammar

-
NP"S VP

| —
PRP VBD NP"VP

| | —
She heard DT NN

| |
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation

}f; Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections 02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

= Here: also size — number of symbols in grammar.

W& Vertical Markovization

: Order 1 Order 2
= Vertical Markov
order: rewrites > /SR,OOT\
depend on past k iR S e .
ancestor nodes. NN | N |
PRP VBD ADJP . PRP VBD ADVP'VP .
(cf. parent | | : | | A
annotation) He was right He was right
79% 25000
78%
7% @ 20000
76% A 2 15000
;Z‘Zo . € 10000 -
% - n
73% - 5000 -
72% - 0 -
1 2v. 2 3v 3 1 2v 2 3v 3

Vertical Markov Order Vertical Markov Order

£ Horizontal Markovization

Order 1 Order o0
W%P NNP NP)*---N\NP‘ NP w
NNP NP-... NNPe NNP NP—NNP NNPe
NIl\IP NIl\IP
74% 12000

73% 9000

72% 6000
71%] 3000 I I
70% 1 T T T T 0 ‘—- T ll T I

0 1 2v 2 inf 0O 1 2v 2 inf

Horizontal Markov Order Horizontal Markov Order

Symbols

|

p 3 Unary Splits

" Problem: unary RO|OT
rewrites used to S
Y T
transmute NP VP ,
. | /\
categories so a NN VED ~p
high-probabilit | | _—] T
g p y Revenue was NP , PP
rule can be used. | |
QP , VBG NP
$ 444.9 million including net interest

s Solution: Mark -

unary rewrite Annotation F1 Size

sites with -U Base 778 |75K

UNARY 78.3 |8.0K

E& Tag Splits

* Problem: Treebank tags vr
g o~
are too coarse. TO VP
| /\
to VB SBAR
= Example: Sentential, PP, see. IN'SNT S
. _I N
and other prepositions if NP VIP
are all marked IN. NlN VBZ
| |
advertising works
= Partial Solution:
= Subdivide the IN tag. Annotation | F1 Size
Previous 78.3 8.0K

SPLIT-IN 80.3 |8.1K

E& A Fully Annotated (Unlex) Tree

ROOT
|
S'ROOT-v

— O\
“S NP'S-B VP’S-VBE-v 'S S
“ DT-U'NP VBZBE'VP NP"VP-B P

| | N

This is NN'NP NN"NP

panic ~ buying

£ Some Test Set Results

Parser LP LR F1 CB O0CB

Magerman 95 [84.9 |(84.6 (84.7 |1.26 |56.6

Collins 96 86.3 |85.8 |[86.0 |1.14 |59.9

Unlexicalized [{86.9 |85.7 |86.3 |[1.10 |60.3

Charniak 97 |87.4 |87.5 [|87.4 |1.00 |62.1

Collins 99 38.7 |88.6 [88.6 [0.90 |(67.1

= Beats “first generation” lexicalized parsers.
= Lots of room to improve — more complex models next.

%€ Binarization / Markovization

NP
v=1,h=c0 v=1h=1 v=1,h=0
NP NP NP
DT/EP[DT] DT/EP[DT] DT/\@NP
J/@>P[DT“] “/Q[...,u] “/\@NP
/®TJJ NN] NN/@>P[...,NN] NN/\@NP

| | |

NN NN NN

%€ Binarization / Markovization

AN

DT JJ NN NN
v=2,h=c0 v=2,h=1 v=2,h=0
NPAVP NPAVP NPAVP
N\
DTANP @NPAVP[DT] DT’\N{;P"VP[DT] DT"N{ENP
N PN
JIANP @NPAVP[DT,J] JIANP @NPAVPL...J]] JJ"N{\@NP
PN N
NNANP @NPAVP[DT,JLNN] NNANP @NPAVPL.,NN] NN"I\I/P\@NP

NNANP NNANP NNANP

p 3 Grammar Projections

Coarse Grammar Fine Grammar
/NP\ NPAVP
DT @NP DTANP @NPAVP[DT]

IJ @NP N
/\ JJANP @NPAVP]...,JJ]
NN @NP ////\\\

| NNANP @NPAVP[...,NN]

NN
NNANP

NP - DT @NP NPAVP - DTANP @NPAVP[DT]

Note: X-Bar Grammars are projections with rules like XP - Y @X or XP > @X Y or @X - X

¥

Grammar Projections

Coarse Symbols Fine Symbols
NP NPAVP
NPAS
@NP @NPAVP[DT]
@NPAS[DT]
DT @NPAVP]...,J]]

@NPASJ...,)]
DTANP

Efficient Parsing for
Structural Annotation

W& Coarse-to-Fine Pruning

For each coarse chart item X[i,j], compute posterior probability:
P(X|i, 7, S) < threshold

E.g. consider the span 5to 12:

coarse:

fine:

W& Coarse-to-Fine Pruning

For each coarse chart item X[i,j], compute posterior probability:

&(Xaivj) ' 6(X,Z,])
a(root, 0, n)

< threshold

E.g. consider the span 5to 12:

coarse:

fine:

p 3 Computing Marginals

o X,i,j)= > > PX—=YZ)aY,ik)a(Zk,j)
X—YZ ke(i,j)

E& Computing Marginals

B(X,ij)= Y Y PY —=ZX)B(Yk j)B,k,i)

Y—ZX ke[0,i)

+ Y Y PY = X2)B(Y,i, k)el(Z, j, k)

Y—=XZ ke(j,n]

% Computing (Max-)Marginals

% Computing (Max-)Marginals

¥

Inside and Outside Scores

p 3 Pruning with A*

" You can also speed up the
search without sacrificing
optimality

" For agenda-based parsers:

= Can select which items to
process first

= Can do with any “figure of
merit” [Charniak 98]

= |f your figure-of-meritis a
valid A* heuristic, no loss of
optimiality [Klein and
Manning 03]

Efficient Parsing for
Lexical Grammars

Lexicalized Trees

Add “head words” to
each phrasal node

= Syntactic vs. semantic
heads

= Headship not in (most)
treebanks

= Usually use head rules,
e.g.:

= NP:
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ
= Take right child

= VP:
= Take leftmost VB*
= Take leftmost VP
= Take left child

rl!e lav.'lyer I /\
questioned DT NN
I i
the witness
4
S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer) /\
| | Vt(questioned) NP(witness)
the lawyer |
questioned

DT(the) NN(witness)
| |

the witness

p 3 Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (saw) VP (saw) VP (saw) VP (saw)

— — T I

VBD (saw) VBD (saw) {NP—C()} VBD (saw) NP-C() NP () VBD (saw) NP-C(her) NP(today)

£ Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (saw)

/ Choose a head tag and word

VBD (saw)

VP (saw)

/ Choose a complement bag

VBD (saw) {Np-C()}

VP (saw)

m Generate children (incl. adjuncts)

VBD (saw) NP-C() NP()

VP (saw)

m Recursively derive children

VBD (saw) NP-C(her) NP(today)

E& Lexicalized CKY

(VP->VBD. . .NP o) [saw] X[h]
/\

(VP->VBD e) [saw] NP [her]

Y[h] Z[n

\
\
\
\
\
AY

i h K h’

bestScore (X,i,j,h)
if (§ = i+l)

return tagScore (X,s[i])

else
return
max max score(X[h]->Y[h] Z[h']) *
bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)
max score (X[h]->Y[h’] Z[h]) *
k,h', X->Y7,

bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Ef; Quartic Parsing

= Turns out, you can do (a little) better [Eisner 99]

X[h]

= Gives an O(n%) algorithm
= Still prohibitive in practice if not pruned

Efi Pruning with Beams

= The Collins parser prunes with per-
cell beams [Collins 99]
= Essentially, run the O(n>) CKY

= Remember only a few hypotheses for
each span <i,j>. X[h]

= |f we keep K hypotheses at each span,
2
then we do at most O(nK?) work per YIh Z[h

span (why?) ,
= Keeps things more or less cubic (and in /\ /\

practice is more like linear!)
i h Kk h’

= Also: certain spans are forbidden
entirely on the basis of punctuation
(crucial for speed)

Efi Pruning with a PCFG

= The Charniak parser prunes using a two-pass, coarse-
to-fine approach [Charniak 97+]

= First, parse with the base grammar

= For each X:[i,j] calculate P(X]|i,j,s)
= This isn’t trivial, and there are clever speed ups

= Second, do the full O(n>) CKY
= Skip any X :[i,j] which had low (say, < 0.0001) posterior

= Avoids almost all work in the second phase!

= Charniak et al 06: can use more passes
= Petrov et al 07: can use many more passes

}f& Results

= Some results

= Collins 99 — 88.6 F1 (generative lexical)

* Charniak and Johnson 05 —89.7 / 91.3 F1 (generative
lexical / reranked)

= Petrov et al 06 —90.7 F1 (generative unlexical)
= McClosky et al 06 —92.1 F1 (gen + rerank + self-train)

Latent Variable PCFGs

Ef; The Game of Designing a Grammar

S
-
NP”S VP
| ——
PRP VBD NP"VP
| I — T

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar

= Parent annotation [Johnson 98]

Eﬁ The Game of Designing a Grammar

PRP VBD NP-noise
| | —
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson 98]
= Head lexicalization [Collins 99, Charniak "00]

Ef; The Game of Designing a Grammar

S
-
NP-1 VP
| _—
PRP VBD NP-2
| | T

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson 98]
= Head lexicalization [Collins 99, Charniak '00]
= Automatic clustering?

W& Latent Variable Grammars

Grammar G
SO — NPO VPO ?
5-1 Sy — NP, VPy ?
— N S, — NP, VP, ?
NP-0 VP-1 -0 Sy — NP, VP, ?
| —~ | S, » NP, VP, ?
S PRP-1 VBD-0 ADJP-0 1 o ¥R
— N | | = S, — NP, VP; ?
NP VP . He was right o
NPO — PRP 0 ?
| o~ | . m=ml) NP, —PRP; ?
PRP VBD AD]JP . 5-0 -
| | — — N\ Lo
/ NP-1 VP-1 -0 exicon
He was right | e | A
PRP-0 VBD-0 ADJP-1 . PRP; — She ?
| l —_ ‘e
He was right VBDy — was ?

VBD,; — was ?
VBD,; — was ?

Parse Tree 7
Sentence Derivations ¢ : T Parameters 6

W Learning Latent Annotations

Backward

—

EM algorithm:

» Brackets are known
» Base categories are known
* Only induce subcategories

S[X1]
B
NP[X5] VP[X4] 1X7]
| i /4\ |7 ‘
PRP[X3] VBD[X5] ADJP[Xg] .
| | —
He was right

Just like Forward-Backward for HMMs.

Forward

¥

Refinement of the DT tag

DT
the (0.50)
a (0.24)
The (0.08)

a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT-2 DT-3 DT-4

¥

Hierarchical refinement

P M
E Em §§~§)

R 1 \LE NN
18 § A G NN A S

o £ {? 3 AN
N S Y
N é\ @ di Y Y

N

\‘l..».,w..._«..w..,w..m,m..‘..w..
 the (0.54)

.
N

o a(0.25)
~ The (0.09)

\)]
I

~some (0.11)

the (0.80)
The (0.15)
a (0.01)

a (061)
the (0.19)
an (0.11)

this (0.39)
that (0.28)
That (0.11)

some (0.20)
all (0.19)

those (0.12)

}ﬁHierarchical Estimation Results

©
o

|

©®
A O

x© o
o DN

Parsing accuracy (F1)

N N
RN » (0 0]
-\

' ' ' ' Model F1
100 300 500 700 900 11

Total Number of gramma| F1at Training 87.3

Hierarchical Training | 88.4

E{i Refinement of the , tag

= Splitting all categories equally is wasteful:

, (1.00)

, (1.00)

e

, (1.00)

10001 [To0 | o0 [.00

¥

Adaptive Splitting

= Want to split complex categories more

were least useful

Idea: split everything, roll back splits which

o&‘....w..<,;«.».;.‘.,..A.......wu..,,“..w RSN

i N N S
- the (0.5
X RN

1(0.25)

E%:- (0.09)

2060

the (0.19)
an (0.11)

N

\
NENENININ

the (OZ96)
2 (0.01)
The (0.01)

Thé 0.93)
A (0.02)
No (0.01)

W& Adaptive Splitting Results

| | Model F1
Previous 88.4
With 50% Merging |89.5

}f@ Number of Phrasal Subcategories

1S71
100d
X
dravHM
odd
-Om<mw
FLNI
-&>D<IE/
-&OD
OVN
ovdd
dNOD
OS
ddHM
-Fma
->Za
-XZ
Ndd

dNHM

dO

dqvds

,(ﬂﬂﬂmmmmmmﬂmﬁﬁﬁﬁﬁﬁﬁ

drav

S

dAav

dd

dA

dN

Efi Number of Lexical Subcategories

:‘7 HII_III_III_IJ_' HIDID N NN W N B B B e B e B s B s B s

70

S
dd
NAS

HN

[ol

Sayd
M4

-gyy-
1am
$dM
X3

-gd7-
gam
1dd
SOd

| dM

afS)e!
an

| $ddd

ddd
srr
dre

| 00

SdNN
1d

| dan

ZaA

NI

as

| aan

an

[98/

gd

[NaA

NN

[SNN

rr

[dNN

¥

Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

¥

Learned Splits

= Relative adverbs (RBR):

RBR-0
RBR-1
RBR-2

further lower higher
more less More
earlier Earlier later

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31
/8 58 34

Efg Final Results (Accuracy)

< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
?n) Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 /6.6
T
< Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Efficient Parsing for
Hierarchical Grammars

E& Coarse-to-Fine Inference

= Example: PP attachment

S
/\
NP VP
PRP
???7°?°°7?°7?7?
They
\Y% NP PP
RN N
raised DT NN IN NP
I VAN

a point of order

p 3 Hierarchical Pruning

coarse: MNP wP | ..

splitineight: .. | ... [... .. ||| |||]

E{i Bracket Posteriors

¢
2.0%
0202050 %
SERERXR
0% %% % % %%

($
0500000300050%0%0%
oo t0toteretetotesets "0y
(858RRRRAIIIK I
0000003030 200202020 303030, 20
0503030300050%030 % 0200202030 000
0505000203030 30%0 %0, Yadededededededede
050303030302020%0 02030, Valededededede? %o
0595030303020%0%0% 203020, Yade303020%0%0, %9
0503000305050%030%0, %0%02030, J0302050303030 0%
0e050305000%0%0%030%0, ¢ a%030,02050%0%03030%¢8 %
0505000305000%0%0%030%0, 20303030te%et0%0 303000, 26
R303000305050%0 3030300000, 43030205030 30303020%020,03¢
0g0e0003000000%0 30303000, 030203020%20302030 %20 ¥0%
0,0%030300050%03030303020%0%0, 205050203 Yedetete? 2032 &
(SCERIIIERRRIIIECRIII K IR IR I
BOL0ee Jetetedededetetedededevedetetededodo sdetededotetede
0% $%0%0%0%" 90%0%%0%° ' #%¢%0%%

o %
1026202920 %%2 %% %%
02020 %% %% %%%
%%° %% %"%%

of

the
House
and
Means

Committee
introduced
how

the

new

s&l

Influential
members
Ways
legislation
that
would
restrict
bailout
agency
can

raise
capital
creating
another
potential
obstacle
S

sale

of

sick

1621 min
111 min
35 min

15 min

(no search error)

Other Syntactic Models

Dependency Parsing

= Lexicalized parsers can be seen as producing dependency trees

S(questioned)
questioned
/ \
NP(lawyer) VP(questioned) lawyer witness
DT(the) NN(lawyer)] _ . l l
| | Vt(questioned) NP(witness) the the
the lawyer |

questioned DT(the) NN(witness)
| |

the witness

= Each local binary tree corresponds to an attachment in the dependency
graph

g Dependency Parsing

= Pure dependency parsing is only cubic [Eisner 99]

Y[h] Z[n

/
1
U
1
/7
7
Vi

i h Kk h j

= Some work on non-projective dependencies

= Common in, e.g. Czech parsing
= Can do with MST algorithms [McDonald and Pereira 05]

AN N AN

root John saw a dog yesterday which was a Yorkshire Terrier

¥

Shift-Reduce Parsers

Another way to derive a tree:

Remaining Text

Parsing

= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]

W& Tree Insertion Grammars

= Rewrite large (possibly lexicalized) subtrees in a single step

P
e —

—

The post office will

discounts and service concessions

= Formally, a tree-insertion grammar

= Derivational ambiguity whether subtrees were generated atomically
or compositionally

= Most probable parse is NP-complete

Insertion

TIG:

¥

¢/

N
V
|

N
D] N
|

Al

NP|

man saw

E& Tree-adjoining grammars

= Start with local trees

= Can insert structure
with adjunction
operators

= Mildly context-
sensitive

= Models long-distance
dependencies
naturally

= .. aswellasother
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

S
NP VP NP
| NMP N |
NNP P VB NP NNS
_ MD VP | |
Qintex | sell assets
would
S
/\
........ 'NP..“'/VP\
.................... VB 3 NP
3 VP S N
| N sell ™.
Nl|\lP MID VP PI|RT N|P
Qintex would R|P Nll\lS
off assets

p 3 TAG: Long Distance

S

N

V S

| N
does NP VP

| /"‘H*
BIill T S

think
S

TN

NP(wh); S
| PN
who NP VP
| N
Harry V. NP

likes &

VP
/\
V S
/\
P VP

N

I
Harry

TN

v
I

likes

NP;
|

>

Ef@ CCG Parsing

= Combinatory John E NP
Categorial Grammar
= Fully (mono-) shares = NP
lexicalized grammar
= Categories encode buyS = (S\NP)/NP

argument sequences
= Very closely related Sleeps - S\NP

to the lambda well F (S\NP)\ (S\NP)

calculus (more later)

= Can have spurious
ambiguities (why?)

S
0N
NP S\NP
| . ~
John (S\NP)/NP NP
|

buys shares

Empty Elements

Empty Elements

S
NP VP
/\\
NN INNS
| |
Housing lobbies VED NP!
|
persuaded INNP

Congress /\
tD /‘\

1aise DT NN to $124 3?5

the ceiling

}& Empty Elements

" |n the PTB, three kinds of empty elements:
= Null items (usually complementizers)

= Dislocation (WH-traces, topicalization, relative clause and
heavy NP extraposition)

= Control (raising, passives, control, shared argumentation)

* Need to reconstruct these (and resolve any
indexation)

p 3 Example: English

NNP VBD ADIJP

| | . | T~
Farmers was JJ) S NN NP VP
| | | | T
quick *ICH*-2 yesterday *-3 TO VP

fo VB PRT NP

point RP NP SBAR

out DT NN WHNP-I S

| | | TN
the problems () NP VP

| PN
PRP VBZ NP
| | |

it sees *[*-]

Example: German

AP-2 VAFIN
B |
ADV NP ADID wird *72% PP
| PN | will PN
Erst ADJA NN spiter PROAV *T7*begonnen ART NE PTKZU VVINF
not until | | later | be begun | | | |
lange Zeit damit den RMV zu schaffen

long time with it the RMV 1o Jorm

Types of Empties

Antecedent POS Label | Count Description
NP NP * 18,334 | NP trace (e.g., Sam was seen *)
NP * 9.812 | NP PRO (e.g., *to sleep is nice)
WHNP |y NP * T * 8,620 | WH trace (e.g., the woman who you saw *T%)
U 7,478 | Empty units (e.g., $ 25 *U%*)
0 5,635 | Empty complementizers (e.g., Sam said O Sasha snores)
S *T* 40639 Moved clauses (e.g., Sam had to go, Sasha explained *T*)
WHADVP ADVP *T* 2,492 | WH-trace (e.g., Sam explained how to leave *T*)
SBAR 2,033 | Empty clauses (e.g., Sam had to go, Sasha explained (SBA
WHNP 0 1,759 | Empty relative pronouns (e.g., the woman 0 we saw)
WHADVP 0 Empty relative pronouns (e.g., no reason 0 to leave)
DT NN WHNB-1 5 T~
tl’|1e mlm —NO|NE— NP ‘ ‘
bowde ver T e VBD said -NONE- 3 Sam
| | | | é |
Sam likes -NONE- changesoccured —NONE-

*Tl_l

*'I‘"Jr_l

E& A Pattern-Matching Approach

[Johnson 02]

NP
NP SBAR
/\ /”’\
DT NN WHNP-1 S
|
the man -NONE- NP VP

NNP VBZ_t NP

Sam likes —-NONE-

*Tl_l

SBAR
WHNP-1 S

|
~-NONE- NP VP

$ //“xx
VB4 _t NP
|
—NONE -
*'I‘)L_l
NP
NP SBAR
N
DT NN S
| | T

the man NP VP

W& Ppattern-Matching Details

= Something like transformation-based learning
= Extract patterns

= Details: transitive verb marking, auxiliaries

= Details: legal subtrees

= Rank patterns
* Pruning ranking: by correct / match rate
= Application priority: by depth

" Pre-order traversal

= Greedy match

Top Patterns Extracted

Count | Match Pattern
5816 6223 (S (NP (—-NONE- *)) VP)
5605 7895 (SBAR (-NONE- 0) S)
5312 5338 (SBAR WHNP-1 (S (NP (-NONE- *T*-1)) VP))
4434 5217 (NP QP (—-NONE- *U%*))
1682 1682 (NP $ CD (—NONE- *U*))
1327 1593 (VP VBN_.t (NP (-NONE- *)) PP)
700 700 | (ADJP QP (-NONE- *U*))
662 1219 (SBAR (WHNP-1 (-NONE- 0)) (5 (NP (-NONE- *T*-=1)) VP))
618 635 (S S-1 , NP (VP VBD (SBAR (—-NONE- 0) (S (-NONE- *T*-=1)))) .)
499 512 (SINV ' 5-1 , "7 (VP VBZ (S (-NONE- *T*-1))) NP .)
361 369 (SINV ' 5-1 , "7 (VP VBD (S5 (-NONE- *T*-1))) NP .)
352 320 | (S NP-1 (VP VBZ (S (NP (-NONE- *-1)) VP)))
346 273 (S NP-1 (VP AUX (VP VBN_t (NP (-NONE- *-1)) PP)))
322 467 (VP VBD_t (NP (—-NONE- *)) PP)
269 275 (s ¥ 5-1 , " NP (VP VBD (S (-NONE- *T*-1))) .)

Results

Empty node Section 23 Parser output

POS Label | P R f P R f
(Overall) 0.93 0.83 0881085 074 0.79
NP * 0.95 087 091|086 079 0.82
NP *T* 093 088 09108 077 0.8I
0 0.94 099 096 | 0.86 0.89 0.88
*Ux 1092 098 0.95] 087 096 0.92
S *T* 1098 083 090|097 0.81 0.88
ADVP *T* [091 052 0.66 [0.84 0.42 0.56
SBAR 0.90 0.63 0.74 1 0.88 0.58 0.70
WHNP 0 0.75 079 0.77 1 048 046 0.47

Semantic Roles

Ef; Semantic Role Labeling (SRL)

Characterize clauses as relations with roles:

| 7uage She | blames [gyaiuee the Government | [reqson for failing to do enough
to help | .

Holman would characterise this as blaming [g,414c the poor | .

The letter quotes Black as saying that [, 4, White and Navajo ranchers |
misrepresent their livestock losses and blame [g.q0n, €verything | [goaivee 0N
coyotes | .

Says more than which NP is the subject (but not much more):

Relations like subject are syntactic, relations like agent or message are
semantic
Typical pipeline:

= Parse, then label roles

= Almost all errors locked in by parser

= Really, SRL is quite a lot easier than parsing

SRL Example

heard

the sound of liquid slurping in a metal container

O
w

Farrell

Theme

approached

l

target

PRP I/\P
NN
him from behind
| l
Goal Source

PropBank / FrameNet

pemain: COmmunication

Domain: (,Ognltlon [T 1)
LR N] LE N
Frame: Questioning
Frame: Conversation Frame Elements: iz:‘?::;ee Frame: Judgment Frame: Categorization
Frame Elements: g::::gg:::::; Message Frame Elements: Judge Frame Elements: Cognizer
Protagonists Topic Evaluee Cate
Medium eason Category
Topic T Role Criterion
Medium
—— Frame: Statement
argue—v debate—y | Frame Elements: Speaker blame—y fault—n
Addressee dmi blame—n
- Message admire—v - . _
banter—y dispute—n Toplc eciate—y dispute—n
ey appreciate—y
converse=v Medhim admiration—n
«

gossip—v Vo eee disapprove—v

discussion—n eee

FrameNet: roles shared between verbs
PropBank: each verb has its own roles

PropBank more used, because it’s layered over the treebank (and so has
greater coverage, plus parses)

Note: some linguistic theories postulate fewer roles than FrameNet (e.g.
5-20 total: agent, patient, instrument, etc.)

p 3 PropBank Example

fall.01 sense: move downward
roles: Argl: thing falling
Arg2: extent, distance fallen
Arg3: start point
Arg4: end point

Sales fell to $251.2 million from $278.7 million.
argl: Sales
rel: fell
argd: to $251.2 million
arg3: from $278.7 million

PropBank Example

rotate.(2 sense: shift from one thing to another
roles: Arg(0: causer of shift
Argl: thing being changed
Arg2: old thing
Arg3: new thing

Many of Wednesday’s winners were losers yesterday as investors
quickly took profits and rotated their buying to other issues, traders
said. (ws)_1723)

arg(: 1nvestors

rel: rotated

argl: their buying

arg3: to other issues

PropBank Example

aim.01 sense: intend, plan
roles: Arg(: aimer, planner
Argl: plan, intent

The Central Council of Church Bell Ringers aims *trace® to
improve relations with vicars. (ws)_0089)
arg: The Central Council of Church Bell Ringers
rel: alms

argl: *trace™ to improve relations with vicars

aim.(2 sense: point (weapon) at
roles: Arg(: aimer
Argl: weapon, etc.
Arg2: target

Banks have been aiming packages at the elderly.
argl: Banks

rel: aiming
argl: packages
arg2: at the elderly

p 3 Shared Arguments

(NP-SBIJ (J] massive) (JJ internal) (NN debt))
(VP (VBZ has)
(VP (VBN forced)
(S
(NP-SBI-1 (DT the) (NN government))
(VP
(VP (TO to)
(VP (VB borrow)
(ADVP-MNR (RB massively))...

massive
internal

debt

massively

p 3 Path Features

He some pancakes
Path Description
VBTVP|PP PP argument/adjunct
VBTVP1S |NP subject
VBTVP|NP object
VBIVPTVP{S|NP subject (embedded VP)
VBTVP|ADVP adverbial adjunct

NNTNPTNP|PP

prepositional complement of noun

}fi Results

= Features:
= Path from target to filler

= Filler’s syntactic type, headword, case

= Target’s identity
= Sentence voice, etc.

= | ots of other second-order features

= Gold vs parsed source trees
= SRL is fairly easy on gold trees

» Harder on automatic parses

CORE

Fl

Acc.

92.2

80.7

CORE

Fl

Acc.

84.1

66.5

E& Parse Reranking

= Assume the number of parses is very small

= We can represent each parse T as a feature vector ¢(T)
= Typically, all local rules are features
= Also non-local features, like how right-branching the overall tree is
[Charniak and Johnson 05] gives a rich set of features

VP

g K-Best Parsing raus. xen, aun 10

S
/\ S
V0 /\
NP VP
NP NP VP
/N Y /N
DT NN DT NN

Y=Yo+r

